Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[ethylenediammonium di- μ_{4}-phosphatodizincate(II)]

Jian-Xin Pan ${ }^{\mathrm{a}, \mathrm{b} *}$ and Guo-Yu Yang ${ }^{\text {b }}$

${ }^{\text {a }}$ Hefei National Laboratory for Physical Sciences at Microscale, and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China, and ${ }^{\mathbf{b}}$ State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
Correspondence e-mail: pjx@mail.ustc.edu.cn
Received 28 May 2007; accepted 7 June 2007

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{P}-\mathrm{O})=0.007 \AA$; disorder in main residue; R factor $=0.047 ; w R$ factor $=0.128$; data-to-parameter ratio $=15.3$.

In the title compound, $\left(\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{ZnPO}_{4}\right]_{2}$, alternating ZnO_{4} $[\mathrm{Zn}-\mathrm{O}=1.899(5)-1.940(6) \AA]$ and $\mathrm{PO}_{4}[\mathrm{P}-\mathrm{O}=1.525$ (6)1.539 (6) \AA] tetrahedra are linked through their vertices to generate a three-dimensional zeolite-like framework with perpendicular six- and eight-membered ring channels. The disordered ethylenediammonium dications are located in the eight-membered ring channels near the twofold axes. The C atom and H atoms attached to C and N are disordered over two positions in a ratio of $0.55: 0.45$. All atoms are located in general positions.

Related literature

The title compound has a zeolite DFT topology (Baerlocher et al., 2001) and its framework is identical to those of UCSB-3 (ZnAsO and GaGeO), ACP-3 (CoAlPO) (Bu, Feng, Gier, Zhao et al., 1998; Bu, Feng, Gier \& Stucky, 1998) and $\left[\mathrm{Fe}_{0.4} \mathrm{Zn}_{0.6} \mathrm{PO}_{4}\right]_{2} \cdot\left[\mathrm{NH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}\right]$ (Zhao et al., 2005). For general background, see: Davis \& Lobo (1992); Cheetham et al. (1999); Rao et al. (2001).

Experimental

Crystal data

$\left(\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{ZnPO}_{4}\right]_{2}$
$M_{r}=382.80$
Tetragonal, $P 4_{2} / n$
$a=10.3940(8) \AA$
$c=8.9094(10) \AA$
$V=962.53(15) \AA^{3}$

Data collection

Siemens SMART CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.566, T_{\text {max }}=0.617$ (expected range $=0.538-0.586$)

2819 measured reflections 841 independent reflections 616 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.056$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
55 parameters
$w R\left(F^{2}\right)=0.128$
H -atom parameters constrained
$S=1.04$
$\Delta \rho_{\text {max }}=0.67 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.66 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 14 \cdots \mathrm{O} 3^{\text {i }}$	0.89	1.99	2.874 (6)	172
$\mathrm{N} 1-\mathrm{H} 2 A \cdots \mathrm{O} 2^{\text {ii }}$	0.89	2.12	2.924 (6)	149
$\mathrm{N} 1-\mathrm{H} 3 A \cdots \mathrm{O} 4$	0.89	1.96	2.838 (6)	168
$\mathrm{N} 1-\mathrm{H} 3 A \cdots \mathrm{O} 3^{\text {iiii }}$	0.89	2.45	2.920 (7)	113
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 3^{\text {iii }}$	0.89	2.03	2.920 (7)	173
$\mathrm{N} 1-\mathrm{H} 18 \cdots \mathrm{O} 4$	0.89	2.32	2.838 (6)	117
$\mathrm{N} 1-\mathrm{H} 2 B \cdots \mathrm{O} 1^{\text {i }}$	0.89	2.23	3.101 (7)	168
$\mathrm{N} 1-\mathrm{H} 2 B \cdots \mathrm{O}^{\text {i }}$	0.89	2.40	2.874 (6)	114
$\mathrm{N} 1-\mathrm{H} 3 B \cdots \mathrm{O}{ }^{\text {ii }}$	0.89	2.25	2.924 (6)	133
$\mathrm{N} 1-\mathrm{H} 3 B \cdots \mathrm{O} 1^{\text {ii }}$	0.89	2.57	3.345 (7)	146
Symmetry codes: $-y+\frac{5}{2}, x,-z+\frac{1}{2}$.	$y+$, $z+\frac{1}{2} ;$	$x+\frac{1}{2}, y$	+1; (iii)

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2252).

References

Baerlocher, C., Meier, W. M. \& Olson, D. H. (2001). Atlas of Zeolite Framework Types, 5th ed. Amsterdam: Elsevier.
Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Bu, X.-H., Feng, P.-Y., Gier, T. E. \& Stucky, G. D. (1998). J. Solid State Chem. 136, 210-215.
Bu, X.-H., Feng, P.-Y., Gier, T. E., Zhao, D.-Y. \& Stucky, G. D. (1998). J. Am. Chem. Soc. 120, 13389-13397.
Cheetham, A. K., Ferey, G. \& Louiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268-3292.
Davis, M. E. \& Lobo, R. F. (1992). Chem. Mater. 4, 756-768
Rao, C. N. R., Natarajan, S., Choudhury, A., Neeraj, S. \& Ayi, A. A. (2001). Acc. Chem. Res. 34, 80-87.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1994). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Zhao, Y. N., Jin, J. \& Kwon, Y. U. (2005). Bull. Korean Chem. Soc. 26, 12771280.

supplementary materials

Poly[ethylenediammonium di- μ_{4}-phosphatodizincate(II)]

J.-X. Pan and G.-Y. Yang

Comment

Organically templated metal phosphates have attracted considerable attention in recent years because of their potential applications in catalysis, ion exchange and separation (Davis \& Lobo, 1992). Among these, zinc phosphates constitute an important family and compounds with zero-, one-, two- and three-dimensional architectures have been isolated (Cheetham et al., 1999; Rao et al., 2001). In the course of our studies of open-framework zinc phosphates, we have got the title compound with zeolite DFT topology. The asymmetric unit of compound (I) is composed of half of a diprotonated ethylenediamine cation and $\left[\mathrm{ZnPO}_{4}\right]^{-}$anion (Fig. 1). The Zn and P atoms both adopt tetrahedral coordination with $\mathrm{d}_{\mathrm{av}}(\mathrm{Zn}-\mathrm{O})=1.921$ (6) \AA and $\mathrm{d}_{\mathrm{av}}(\mathrm{P}-\mathrm{O})=1.532(6) \AA$. Each Zn atom makes four $\mathrm{Zn}-\mathrm{O}-\mathrm{P}$ links to nearby P atoms via bicoordinate O atom bridges and vice versa, thus a fully connected alternating three-dimensional framework arises. The compound consists of 4-, 6-, and 8-rings and its framework topology is identical to that of UCSB-3, ACP-3 (Bu, Feng, Gier, Zhao et al., 1998; Bu, Feng, Gier \& Stucky, 1998) and [$\left.\mathrm{Fe}_{0.4} \mathrm{Zn}_{0.6} \mathrm{PO}_{4}\right]_{2} \cdot\left[\mathrm{NH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}\right]$ (Zhao et al., 2005). The anionic [$\left.\mathrm{ZnPO}_{4}\right]^{-}$framework encloses a system of fairly regular 8-ring (i.e. eight tetrahedral centres made up of four ZnO_{4} and four PO_{4} units) channels propagating along [001] direction (Fig. 2) (approximate atom-to-atom dimensions $=7.36 \times 4.63 \AA$). These intersect with the 8 -ring channels (dimensions $\sim 7.18 \times 3.56 \AA$) which propagate along [110] and [-110] directions (Fig. 3). The diprotonated ethylenediamine molecules are located at the center of 8-ring channels viewed along the c axis. Two nitrogen atoms are ordered, whereas two carbon atoms each have two possible locations, as illustrated in Fig. 1. The twofold axis (1/4, 1/4, z) along the c axis passes through ethylenediamine molecules in both orientations. The template molecules form $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ type hydrogen bonds with the oxygen atoms of the framework (Table 1).

Experimental

The title compound was prepared by hydrothermal synthesis from a mixture of $\mathrm{ZnO}(0.162 \mathrm{~g}, 2 \mathrm{mmol})$, diethylenetriamine $(0.22 \mathrm{ml}, 2 \mathrm{mmol}), 85 \% \mathrm{H}_{3} \mathrm{PO}_{4}(0.20 \mathrm{ml}, 3 \mathrm{mmol})$ and $37 \% \mathrm{HCl}(1 \mathrm{ml})$ in $\mathrm{H}_{2} \mathrm{O}(3.6 \mathrm{ml})$. The mixture was sealed in a Teflon autoclave, heated at 433 K for 4 d , and cooled. The resulting product, containing colorless prismlike single crystals, was filtered, washed with distilled water, and then dried at ambient temperature (87% yield based on Zn).

Refinement

All the hydrogen atoms were positioned geometrically (the $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ bonds were fixed at 0.97 and $0.89 \AA$, respectively) and refined in the riding mode, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{N})$. The C 1 atom in dication was treated as disordered between two positions with occupancies of 0.55 and 0.45 , respectively. Subsequently, the H atoms attached to atoms C 1 and N 1 were treated as disordered too.

Figures

Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 40% probability level. Two orientations of diprotonated ethylenediamine are also shown. H atoms have been omitted. Symmetry codes are as in Table 1.

Fig. 2. Polyhedral view of the structure of the title compound along the [001] direction showing the 8 -ring channels. Dotted lines indicate hydrogen-bonding interactions and H atoms have been omitted. Color code: ZnO_{4} tetrahedra, magenta; PO_{4} tetrahedra, green; N , blue; C , gray.

Fig. 3. Polyhedral view of the eight-ring channels along the [110] direction in the title compound. Color key is as in Fig. 2.

Poly[ethylenediammonium di- μ_{4}-phosphatodizincate(II)]

Crystal data

$\left(\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{ZnPO}_{4}\right]_{2}$
$M_{r}=382.80$
Tetragonal, $P 4_{2} / n$
$a=10.3940(8) \AA$
$b=10.3940(8) \AA$
$c=8.9094(10) \AA$
$\alpha=90^{\circ}$
$\beta=90^{\circ}$
$\gamma=90^{\circ}$
$V=962.53(15) \AA^{3}$

Data collection

Siemens SMART CCD
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$Z=4$
$F_{000}=760$
$D_{\mathrm{x}}=2.642 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 36 reflections
$\theta=2.8-25.0^{\circ}$
$\mu=5.35 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colorless
$0.12 \times 0.12 \times 0.10 \mathrm{~mm}$
$T=293(2) \mathrm{K}$
φ and ω scans
Absorption correction: mulit-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.566, T_{\text {max }}=0.617$
2819 measured reflections

$$
\begin{aligned}
& \theta_{\max }=25.0^{\circ} \\
& \theta_{\min }=2.8^{\circ} \\
& h=-11 \rightarrow 12 \\
& k=-12 \rightarrow 8 \\
& l=-10 \rightarrow 6
\end{aligned}
$$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0595 P)^{2}+6.4771 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.67 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.66$ e \AA^{-3}
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$	Occ. (<1)
Zn1	$1.11040(8)$	$0.87230(8)$	$0.33996(9)$	$0.0193(3)$	
P1	$1.11143(19)$	$0.59342(19)$	$0.2006(2)$	$0.0180(5)$	
O1	$1.0614(7)$	$0.7318(6)$	$0.2109(7)$	$0.0461(18)$	
O2	$1.0612(6)$	$0.8386(6)$	$0.5432(6)$	$0.0293(14)$	
O3	$0.9986(6)$	$1.0023(6)$	$0.2537(7)$	$0.0354(16)$	
O4	$1.2829(5)$	$0.9291(6)$	$0.3159(6)$	$0.0369(16)$	
N1	$1.3804(7)$	$1.1268(7)$	$0.5038(9)$	$0.032(16)$	
H1A	1.4138	1.0814	0.5790	0.047^{*}	0.45
H2A	1.4422	1.1726	0.4598	0.047^{*}	0.45
H3A	1.3454	1.0736	0.4371	0.047^{*}	0.45
H1B	1.4146	1.0809	0.4295	0.047^{*}	0.55
H2B	1.3480	1.0739	0.5727	0.047^{*}	0.55

H3B	1.4410	1.1757	0.5454	0.047^{*}	0.55
C1	$1.2800(17)$	$1.2149(16)$	$0.5630(2)$	$0.025(7)$	0.45
H4A	1.2129	1.1654	0.6120	0.030^{*}	0.45
H5A	1.3175	1.2725	0.6366	0.030^{*}	0.45
C2	$1.2739(2)$	$1.2120(2)$	$0.4420(3)$	$0.051(8)$	0.55
H4B	1.3566	1.2199	0.3924	0.061^{*}	0.55
H5B	1.2268	1.1383	0.4040	0.061^{*}	0.55

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn 1	$0.0177(5)$	$0.0194(6)$	$0.0206(5)$	$0.0019(4)$	$0.0008(4)$	$0.0003(4)$
P 1	$0.0178(11)$	$0.0171(11)$	$0.0190(10)$	$-0.0038(8)$	$-0.0008(8)$	$-0.0025(8)$
O 1	$0.067(5)$	$0.028(4)$	$0.044(4)$	$0.007(3)$	$-0.008(3)$	$-0.014(3)$
O 2	$0.036(4)$	$0.032(3)$	$0.020(3)$	$-0.007(3)$	$0.000(3)$	$-0.003(3)$
O 3	$0.046(4)$	$0.033(4)$	$0.027(3)$	$0.024(3)$	$-0.005(3)$	$-0.004(3)$
O 4	$0.019(3)$	$0.060(4)$	$0.032(3)$	$-0.009(3)$	$0.008(3)$	$-0.006(3)$
N 1	$0.026(4)$	$0.030(4)$	$0.039(4)$	$0.006(4)$	$-0.003(3)$	$-0.002(3)$
C 1	$0.024(11)$	$0.018(12)$	$0.031(15)$	$0.010(8)$	$-0.016(8)$	$-0.016(7)$
C 2	$0.048(15)$	$0.052(17)$	$0.053(18)$	$0.006(10)$	$0.001(10)$	$-0.002(10)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

Zn1-O4	1.900 (6)	N1-H2A	0.8900
$\mathrm{Zn} 1-\mathrm{O} 2$	1.914 (6)	N1-H3A	0.8900
Zn1-O1	1.927 (6)	N1-H1B	0.8900
Zn1-O3	1.941 (6)	N1-H2B	0.8900
$\mathrm{P} 1-\mathrm{O} 4^{\text {i }}$	1.522 (6)	N1-H3B	0.8900
$\mathrm{P} 1-\mathrm{O} 2{ }^{\text {ii }}$	1.532 (6)	$\mathrm{C} 1-\mathrm{Cl}^{\text {vi }}$	0.9599
P1-O1	1.532 (7)	$\mathrm{C} 1-\mathrm{C} 2$	1.0803
P1-O3 ${ }^{\text {iii }}$	1.538 (6)	$\mathrm{C} 1-\mathrm{C} 2{ }^{\text {vi }}$	1.4329
$\mathrm{O} 2-\mathrm{P} 1^{\text {iv }}$	1.532 (6)	C1-H4A	0.9700
$\mathrm{O} 3-\mathrm{P} 1^{\text {v }}$	1.538 (6)	C1-H5A	0.9700
O4-P1 ${ }^{\text {i }}$	1.522 (6)	$\mathrm{C} 2-\mathrm{C} 2{ }^{\text {vi }}$	0.9332
N1-C1	1.4852	$\mathrm{C} 2-\mathrm{C} 1{ }^{\text {vi }}$	1.4329
N1-C2	1.5208	C2-H4B	0.9700
N1-H1A	0.8900	C2-H5B	0.9700
$\mathrm{O} 4-\mathrm{Zn} 1-\mathrm{O} 2$	114.6 (2)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 3 \mathrm{~B}$	89.8
$\mathrm{O} 4-\mathrm{Zn} 1-\mathrm{O} 1$	114.7 (3)	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 3 \mathrm{~B}$	109.5
$\mathrm{O} 2-\mathrm{Zn} 1-\mathrm{O} 1$	110.8 (3)	H1A-N1-H3B	73.3
$\mathrm{O} 4-\mathrm{Zn} 1-\mathrm{O} 3$	107.7 (3)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{N} 1-\mathrm{H} 3 \mathrm{~B}$	50.8
$\mathrm{O} 2-\mathrm{Zn} 1-\mathrm{O} 3$	110.0 (3)	H3A-N1-H3B	157.3
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{O} 3$	97.7 (3)	H1B-N1-H3B	109.5
$\mathrm{O} 4{ }^{\text {i }}-\mathrm{P} 1-\mathrm{O} 2^{\text {ii }}$	109.8 (3)	$\mathrm{H} 2 \mathrm{~B}-\mathrm{N} 1-\mathrm{H} 3 \mathrm{~B}$	109.5
$\mathrm{O} 4{ }^{\mathrm{i}}-\mathrm{P} 1-\mathrm{O} 1$	110.4 (4)	$\mathrm{C} \mathrm{V}^{\text {vi }}-\mathrm{C} 1-\mathrm{C} 2$	89.0
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{P} 1-\mathrm{O} 1$	112.0 (4)	$\mathrm{C} 1{ }^{\mathrm{vi}}-\mathrm{C} 1-\mathrm{C} 2{ }^{\text {vi }}$	48.9

sup-4

$\mathrm{O} 4{ }^{\mathrm{i}}-\mathrm{Pl}-\mathrm{O} 3^{\text {iii }}$	104.9 (4)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 2{ }^{\text {vi }}$	40.6
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{P} 1-\mathrm{O} 3^{\text {iii }}$	110.9 (3)	$\mathrm{C} 1^{\text {vi }}-\mathrm{C} 1-\mathrm{N} 1$	157.7
O1-P1-O3 ${ }^{\text {iii }}$	108.5 (4)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	70.7
P1-O1-Zn1	131.1 (4)	$\mathrm{C} 2{ }^{\text {vi }}-\mathrm{C} 1-\mathrm{N} 1$	109.5
$\mathrm{P} 1^{\text {iv }}-\mathrm{O} 2-\mathrm{Zn} 1$	138.2 (4)	$\mathrm{C} 1{ }^{\text {vi}}-\mathrm{C} 1-\mathrm{H} 4 \mathrm{~A}$	86.3
P1 ${ }^{\text {v }}$-O3-Zn1	141.3 (4)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 4 \mathrm{~A}$	113.1
$\mathrm{P} 1^{\text {i }}-\mathrm{O} 4-\mathrm{Zn} 1$	135.2 (4)	$\mathrm{C} 2{ }^{\text {vi }}-\mathrm{C} 1-\mathrm{H} 4 \mathrm{~A}$	109.8
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	42.1	N1-C1-H4A	109.8
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	109.5	$\mathrm{C} 1{ }^{\text {vi }}-\mathrm{C} 1-\mathrm{H} 5 \mathrm{~A}$	78.0
C2-N1-H1A	149.9	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 5 \mathrm{~A}$	135.7
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 2 \mathrm{~A}$	109.5	$\mathrm{C} 2{ }^{\text {vi }}-\mathrm{C} 1-\mathrm{H} 5 \mathrm{~A}$	109.8
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 2 \mathrm{~A}$	93.1	N1-C1-H5A	109.8
H1A-N1-H2A	109.5	H4A-C1-H5A	108.2
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 3 \mathrm{~A}$	109.5	$\mathrm{C} 2{ }^{\text {vi }}-\mathrm{C} 2-\mathrm{C} 1$	90.4
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 3 \mathrm{~A}$	79.8	$\mathrm{C} 2{ }^{\text {vi}}-\mathrm{C} 2-\mathrm{C} 1^{\text {vi }}$	48.9
$\mathrm{H} 1 \mathrm{~A}-\mathrm{N} 1-\mathrm{H} 3 \mathrm{~A}$	109.5	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 1^{\text {vi }}$	42.0
$\mathrm{H} 2 \mathrm{~A}-\mathrm{N} 1-\mathrm{H} 3 \mathrm{~A}$	109.5	$\mathrm{C} 2{ }^{\text {vi }}-\mathrm{C} 2-\mathrm{N} 1$	151.7
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	151.1	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	67.2
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	$\mathrm{C} \mathrm{V}^{\mathrm{vi}}-\mathrm{C} 2-\mathrm{N} 1$	108.7
$\mathrm{H} 1 \mathrm{~A}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	96.9	$\mathrm{C} 2{ }^{\text {vi}}-\mathrm{C} 2-\mathrm{H} 4 \mathrm{~B}$	113.6
$\mathrm{H} 2 \mathrm{~A}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	70.8	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 4 \mathrm{~B}$	113.6
$\mathrm{H} 3 \mathrm{~A}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	48.2	$\mathrm{C} 1{ }^{\text {vi }}-\mathrm{C} 2-\mathrm{H} 4 \mathrm{~B}$	130.1
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 2 \mathrm{~B}$	82.5	N1-C2-H4B	64.5
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 2 \mathrm{~B}$	109.5	$\mathrm{C} 2{ }^{\text {vi }}-\mathrm{C} 2-\mathrm{H} 5 \mathrm{~B}$	113.6
$\mathrm{H} 1 \mathrm{~A}-\mathrm{N} 1-\mathrm{H} 2 \mathrm{~B}$	45.7	C1-C2-H5B	113.6
$\mathrm{H} 2 \mathrm{~A}-\mathrm{N} 1-\mathrm{H} 2 \mathrm{~B}$	155.1	C1 ${ }^{\text {vi }}-\mathrm{C} 2-\mathrm{H} 5 \mathrm{~B}$	118.9
$\mathrm{H} 3 \mathrm{~A}-\mathrm{N} 1-\mathrm{H} 2 \mathrm{~B}$	85.5	N1-C2-H5B	91.9
H1B-N1-H2B	109.5	H4B-C2-H5B	110.8

Symmetry codes: (i) $-x+5 / 2,-y+3 / 2, z$; (ii) $-y+2, x-1 / 2, z-1 / 2$; (iii) $y,-x+3 / 2,-z+1 / 2$; (iv) $y+1 / 2,-x+2, z+1 / 2$; (v) $-y+3 / 2, x,-z+1 / 2$; (vi) $-x+5 / 2,-y+5 / 2, z$.

Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O}^{\text {iv }}$	0.89	1.99	$2.874(6)$	172
$\mathrm{~N} 1 — \mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O}^{\text {vii }}$	0.89	2.12	$2.924(6)$	149
$\mathrm{~N} 1 — \mathrm{H} 3 \mathrm{~A} \cdots \mathrm{O} 4$	0.89	1.96	$2.838(6)$	168
$\mathrm{~N} 1 — \mathrm{H} 3 \mathrm{~A} \cdots \mathrm{O}^{\text {viii }}$	0.89	2.45	$2.920(7)$	113
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~B} \cdots \mathrm{O}^{\text {viii }}$	0.89	2.03	$2.920(7)$	173
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~B} \cdots \mathrm{O} 4$	0.89	2.32	$2.838(6)$	117
$\mathrm{~N} 1 — \mathrm{H} 2 \mathrm{~B} \cdots \mathrm{O}^{\text {iv }}$	0.89	2.23	$3.101(7)$	168
$\mathrm{~N} 1 — \mathrm{H} 2 \mathrm{~B} \cdots 3^{\text {iv }}$	0.89	2.40	$2.874(6)$	114
$\mathrm{~N} 1 — \mathrm{H} 3 \mathrm{~B} \cdots \mathrm{O}^{\text {vii }}$	0.89	2.25	$2.924(6)$	133
$\mathrm{~N} 1 — \mathrm{H} 3 \mathrm{~B} \cdots \mathrm{O}^{\text {vii }}$	0.89	2.57	$3.345(7)$	146

supplementary materials

Symmetry codes: (iv) $y+1 / 2,-x+2, z+1 / 2$; (vii) $x+1 / 2, y+1 / 2,-z+1$; (viii) $-y+5 / 2, x,-z+1 / 2$.

Fig. 1

Fig. 2

Fig. 3

